
R

T
s
b

M
a

b

c

a

A
R
A
A

K
L
C
B

1

e

L

1
d

Journal of Chromatography B, 877 (2009) 1250–1258

Contents lists available at ScienceDirect

Journal of Chromatography B

journa l homepage: www.e lsev ier .com/ locate /chromb

eview

echnical, bioinformatical and statistical aspects of liquid chromatography–mass
pectrometry (LC–MS) and capillary electrophoresis-mass spectrometry (CE-MS)
ased clinical proteomics: A critical assessment�

ohammed Daknaa,∗, Zengyou Heb, Wei Chuan Yub, Harald Mischaka, Walter Kolchc

Mosaiques Diagnostics & Therapeutics, Hannover, Germany
Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
The Beatson Institute for Cancer Research & Sir Henry Wellcome Functional Genomics Facility, University of Glasgow, Glasgow, UK

r t i c l e i n f o

rticle history:
eceived 9 July 2008
ccepted 28 October 2008

a b s t r a c t

The search for biomarkers in biological fluids that can be used for disease diagnosis and prognosis using
mass spectrometry has emerged to become a state-of-the-art methodology for clinical proteomics. Poor
cross platform comparison of the findings, however, makes the need for comparison studies probably
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as urgent as the need for new ones. It is now increasingly recognized that standardized statistical and
bioinformatics approaches during data processing are of utmost importance for such comparisons. This
paper reviews two of the currently most promising methods, namely LC–MS and CE-MS techniques, and
software tools used to analyze the huge amount of data they generate. We further review the statistical
issues of feature selection and sample classification.
Clinical proteomics
Statistical data analysis

© 2008 Elsevier B.V. All rights reserved.

Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1250
2. LC–MS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1251
3. CE-MS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1252
4. LC–MS versus CE-MS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1252
5. Bioinformatics of LC–MS and CE-MS data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1253

5.1. The mzXML file format: storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1254
5.2. Software tools for biomarker definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1254

6. Sample classification using LC–MS and CE-MS data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1254
6.1. Feature selection strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1255

6.2. Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1256

. . . . .
. . . .

. . . . .

. Introduction

Over the past two decades many proteomics technologies
volved. On one hand, these different methodologies fueled the

� This paper is part of the special issue “Quantitative Analysis of Biomarkers by
C–MS/MS”, J. Cummings, R.D. Unwin and T. Veenstra (Guest Editors).
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rogress of this field. On the other hand, this progress has led to
he lack of comparability of proteomics research findings. These
ntriguing problems have received great attention by researchers
n clinical proteomics. The first argument for explaining this great
ariability is to attribute it to differences in study designs where
6.3. Cross-validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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atient sampling may include unmatched important confounding
actors such as age or gender. A second argument may be the dif-
erence among the technologies that are currently in use as well as
he difference among software and data analysis platforms. Hence,
he community increasingly becomes aware about the need of
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tandards that should be reported together with proteomics exper-
ments [1,2].

The analysis of complex biological fluids requires a pipeline
f methods for separation, identification and quantification of
otential biomarkers [3]. One of the most common techniques is

iquid chromatography–mass spectrometry (LC–MS) that generates
two-dimensional data chart. Further, capillary electrophoresis-
ass spectrometry (CE-MS) has also been shown to present an

ttractive platform for clinical proteomics [4–8]. From a bioinfor-
atics point of view, these two methods are similar as the structure

nd the amount of the data generated is quite comparable.
Here we compare the methodological and technical aspects of

oth methods. Particular emphasis will be given to the issue of data
rocessing [9,10]. Several of the software solutions that have been
eveloped over the last years are reviewed.

Once the raw data are processed and compiled, feature selection
trategies and classification algorithms are used to extract clini-
ally relevant information from the data (e.g. classify the patients
n disease and control groups). Guidelines are given to ensure sound
eporting of biomarkers with potential discriminatory power [11].
n particular, the multiplicity issue inherent to all high through-
ut proteomics is outlined. One of the major aims is to define
iomarkers differently expressed between two conditions (e.g.
isease versus control) while keeping low probability for false pos-

tives. Hence, issues of multiple testing and statistical power are of
tmost importance for designing proteomics pilot studies to fol-

ow the strict statistical guidelines required in clinical applications
12]. We discuss one popular classification procedure: linear dis-
riminant analysis (LDA). The LDA has been applied for almost a
entury in different context with great success [13]. We opt for LDA
ecause of its simplicity and because many of the pitfalls such as
ll-conditioned classification problems as well as collinearity issues
f the features used in classification are easily discussed within this
ontext.

The paper is organized as follows. We first describe and compare
he technical aspects of LC–MS and CE-MS. We then address the
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Fig. 1. Outline of LC–M
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rocess of raw data processing, storage and generation of biomark-
rs lists. Aspects of sample classification and related statistical
itfalls are discussed and followed by a conclusion.

. LC–MS

LC–MS is a hyphenated technique, which combines the separa-
ion power of LC with the detection power of mass spectrometry.
n LC–MS system consists of the following four main components:

1) A chromatographic column: The chromatographic column uses
a liquid as the mobile phase and a porous solid as the stationary
phase. The mobile phase contains the peptides to be separated
and moves through the stationary phase. The column sepa-
rates peptides according to their separation characteristics that
result in elution at different time points. In proteomics, two
LC methods are commonly used: reverse phase chromatography
(RV, separating on hydrophobicity) and strong cation exchange
chromatography (SCX, separating on charge).

2) An ionization source: It converts eluting peptides into ions. Two
typical ionization techniques are electrospray ionization (ESI)
and matrix-assisted laser desorption/ionization (MALDI).

3) Mass analyzer: The mass analyzer separates ions based on
their masses. There are mainly four commonly used types of
mass analyzers in proteomics: ion trap, time-of-flight (TOF),
quadrupole and Fourier transform ion cyclotron resonance (FT-
ICR).

4) Detector: It records the relative abundance of ions at different
m/z locations.

Fig. 1 depicts a typical LC–MS based proteomics experi-

ent. First, protein mixtures are isolated from biological samples

nd often enzymatically digested into peptides. The resulting
eptides are then separated into different subsets using LC.
he eluting peptides are subjected to ionization, resulting in
ultiple, generally protonated peptides entering the mass spec-

S experiments.
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rometer, where a mass spectrum of the peptides is recorded
3].

The output data in LC–MS experiments can be regarded as a
wo-dimensional image. The horizontal dimension represents the
etention (or elution) time and the vertical dimension represents
ifferent m/zvalues. Since the LC–MS system generates mass spec-
ra at discrete time points, it may be convenient to use scans instead
f retention times. The mass spectrum at each single scan registers
he abundance of peptide ions at different m/z locations.

The analysis of LC–MS data consists of multiple tasks, which can
e categorized into three groups: low-level processing, mid-level
rocessing and high-level processing [14].

1) Low-level processing consists of general-purpose tasks such as
baseline correction, normalization and filtering.

2) Mid-level processing consists of peak detection, de-isotoping,
charge deconvolution and alignment.

3) High-level processing consists of feature selection and classifi-
cation.

All these data analysis tasks have been studied extensively. The
ow-level and mid-level processing methods are reviewed in detail
n [15,14]. In particular, the alignment of LC–MS data are discussed
n a recent review paper in detail [16]. High-level processing meth-
ds have also been partially discussed in above reviews. A recent
eview [17] systematically discusses the data analysis tasks at dif-
erent levels.

The moderate reproducibility of the LC separation process
akes the analysis of LC–MS data challenging. Consequently,

mprovements in LC–MS data analysis methods as well as in soft-
are packages are required.

. CE-MS

The combination of capillary electrophoresis with electrospray
onization mass spectrometry was applied successfully in several
linical proteomics studies [18–22]. Fig. 2 depicts the common
etup of a CE-MS experiment. In principle, CE can be interfaced
ith any mass spectrometer. Mostly capillary zone electrophoresis
CZE) has been utilized in MS coupling, and CE is often (and also
ere) used synonymously for CZE. Other approaches like capillary

soelectric focusing (C-IEF) appear to be less widely used, mostly
ue to sophisticated technology that requires exceptional experts

n running such analysis, and also due to technical limitations

Fig. 2. Outline of CE-MS experiments.
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e.g. the problem of background ampholyte interfering with MS
etection). Whereas some manuscripts indicated that proteome
nalysis may be possible on a large scale using C-IEF-MS [23], this
nitial optimism unfortunately was not yet substantiated by addi-
ional reports. The different types of CE modes that can be applied
owards proteome analysis have recently been described in detail
n [4,5]. As outlined in [4,5] CE-MS coupling via sheath-flow inter-
acing is highly stable, and also represents a sensitive detection
evice [24,25]. Stability and sensitivity have been demonstrated

n a number of recent articles [25–29]. CE-MS with sheath-flow
nterfacing shows a higher detection limit due to higher flow
ates. But it also shows higher stability, a major advantage when
omparing large number of samples. Consequently, the majority
f reports on CE-MS utilize sheath-flow interfacing [25].

A hallmark of CE-separation is the appearance of “streaks” of
eptides, when migration time is plotted against mass (Fig. 3).
hese “streaks” are the result of the simple separation principle
sed. Separation is accomplished by electrical force applied onto
he ion, which in turn depends on the charge and on the flow resis-
ance, depends on the cross-section of the ion. At a low pH, the
mino groups are protonated, and protons in general are the sole
ource of charge under these conditions. The position of each pep-
ide in a CE-separation can, therefore, be calculated with perfect
ccuracy if its mass and the number of basic amino acids are known,
s described in [30].

. LC–MS versus CE-MS

As already outlined in a previous review [24], CE holds several
dvantages over LC, which were very recently confirmed in detail in
everal reviews [31,32]. These advantages are especially beneficial
hen analyzing a large number of heterogeneous samples that con-

ain interfering compounds, such as lipids, precipitates, etc. Its main
dvantages are the robustness, ability to fast recondition NaOH,
he simple separating principle with high reproducibility, and, with
espect to MS interfacing, a buffer that does not change its compo-
ition due to gradient. Furthermore, CE-MS enables reproducible
nd comparable analysis of highly complex samples, as shown in
ig. 4 for rat urine samples [33].

A disadvantage of CE is its limited loading capacity. Whereas ml
uantities can be loaded onto an LC column, a CE can be filled with
maximum of ca. 1 �l and in general only 10–100 nl. Although pH-

tacking can be used very effectively, a maximum of 30–50% of the
otal capillary volume can be filled with sample, which corresponds
o 0.5–2 �l when using 50 or 75 �m ID capillaries with 80–100 cm
ength. This limitation is of minor consideration in CE-MS coupling,
ince the concentration of analytes in the sample is generally high
with respect to the detection limit in the fmol range). Here the

ajor limitation is due to the dynamic range of the mass spec-
rometer (4 orders of magnitude at best), and that more abundant
eptides will obscure minor signals. Even if the detection limits
ere lowered significantly or more samples could be loaded, the
umber of detected peptides will not increase proportionally. In
large fraction of the CE-MS data space, signal is already present.
dditional signals at the same or an overlapping position (due to the

sotopic distribution of a peptide generally covers 3–6 mass units)
annot be detected with good confidence, as they are likely to be
bscured by stronger signals that are already present, and may even
esult in conflicts in data interpretation.
Although CE can be interfaced with a MS/MS instrument, direct
equencing of the CE does represent a challenging task, because
nly limited amounts of sample can be loaded onto the capillary
see above), yielding small peaks in the MS which are problem-
tic for subsequent MS/MS analysis. An alternative approach is the
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Fig. 3. Compiled CE-MS data from healthy volunteers. (A) Contour plot of the entire urine peptidome. The molecular mass (logarithmic scale) on the y-axis is plotted against
normalized CE migration time on the x-axis. The arrangement of the analyzed peptides in distinct lines is obvious. (B) Contour plot of 107 identified polypeptides. The
lines already observed in (A) result from the number of positive charges x (at pH 2.2). Peptides marked with circle: Collagen type VI alpha 4 fragment (PLGLPGIDGIPGL);
1217.702 Da; migration time: 34.03 min. Peptide marked with dashed circle: Insulin-like 3 fragment (LTLGPGLQPLPQ); 1232.713 Da; migration time: 36.19 min. (C) Correlation
between the effective net charge, molecular mass, and the CE migration time for several examples of determined peptide sequences. Basic amino acids are highlighted with
a star. Reprinted from [30] with permission.

Fig. 4. Reproducibility of urinary rat polypeptides evaluation. Examples of electrophoreograms from four (of 19) consecutive measurements of a single urine sample. The
m hmic s
C ct line
a replic

i
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5

/z values of the 2-D raw data plots (upper Panel) and the molecular mass (logarit
E migration time on the x-axis. The arrangement of the analyzed peptides in distin
t pH 2. An average of 1300 ± 106 polypeptides were detected in each one of the 19

nterfacing of MS/MS with LC to allow loading of larger amounts of
aterial. Because theoretical migration time can be used to cal-
ulate the exact position of a peptide in CE-MS, sequences can
e rather exactly attributed to a position in the CE-MS run. This
pproach, in combination with highly accurate precursor-ion mass
etermination with CE-FT-ICR analysis, has proven very successful
34,21,22,35].

c
d
l
d

cale) of the deconvoluted 3-D plots (lower Panel) on the y-axis are plotted against
s is obvious and can be comprehended as a result of the number of positive charges
ates. Reprinted from [33] with permission.

. Bioinformatics of LC–MS and CE-MS data
The last years have seen a dramatic increase in the number of
ommercial and open source tools developed to assist researchers
uring the different stages of proteomics data processing. Here we

ist some of them and refer the reader to different reviews where
etailed discussions of those tools are reported.
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Table 1
Tools for storage and quantification of LC or CE MS and MS/MS data.

Name Website-reference License

TPP http://tools.proteomecenter.org/TPP.php [38] Open source
C S/Proj
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PAS http://proteomics.fhcrc.org/CPA
EPPeR www.broad.mit.edu/cancer/soft
PP www.insilicos.com/IPP.html
caffold www.proteomesoftware.com

.1. The mzXML file format: storage

At the bottom of the raw data processing, before genuine
ata analysis can take place, the raw data must be read in the
iven application software. Since all machines store data in pro-
rietary formats, the use of non-vendor processing tools may
ose a problem. Recently, the situation has changed because the
merging XML file formats have been increasingly used for stor-
ng the raw data. Several tools are available for converting data
rom common instruments to mzXML, mzData or mzML format
9,10]. The reader is referred to www.sashimi.sourceforge.net and
ww.proteomecommons.org for more details. From a statistical
oint of view, it should be noted that the term “raw data” in this con-
ext is not strictly accurate, as manufacturers include some signal
rocessing steps in the collection of such data. The different raw
ata output formats of mass spectrometers were a major obsta-
le to uniform proteomics analysis, as the generated data could
ot be easily managed, organized and shared among researchers
t various institutions. With data in the mzXML format there is
o need for vendor supplied programming interfaces or dynami-
ally linked libraries. Furthermore, the process of development of
ownstream analysis software is alleviated from supporting differ-
nt native formats. Usually the mzXML raw data files may be 2 or 3
imes the size of the original native format. After compressing the
les, however, the sizes become comparable. A major advantage
f mzXML is offset indexing, enabling easy location of each spec-
rum within the data file. This may speed up the loading time of
igabyte data streams and can advantageously be used for storing
dditional information as implemented in some software packages
e.g. [36,37]).

The storage and management of LC–MS CE-MS and MS/MS data
s a challenging task due to the huge sizes of the raw data files. Some
oftware solutions assist the users in organizing the data as well as
or searching proteins and peptides databases. Table 1 lists some of
he most widely used storage and management pipelines.

One of the most important forces that drive the computational

esearch in microarray genomics profiling was the availability of
ublic raw data repositories (e.g. the Stanford Microarray Database
SDM)) where experimenters may depose their data in the pub-
ic domain. The availability of such data attracted the interest
f many skilled bioinformaticians and statisticians. The analysis

p
m
t
r

able 2
ools for processing raw LC–MS or CE-MS data.

ackage name Website-reference

Sinpect http://proteomics.fhcrc.org/CPL/msinspect.html [36,37]
sight www.expasy.ch/MSight [47]
cms http://masspec.scripps.edu/xcms/xcms.php [48]
IPER http://omics.pnl.gov/software/VIPER.php [49]
penMS http://open-ms.sourceforge.net [50]
osavisu www.mosaiques.com

roTrawler/Regatta www.bioanalyte.com
arkerView http://products.appliedbiosystems.com/ab/en/US/adirect/ab

rogenesis www.nonlinear.com/products/progenesis/lcms/overview.as
assLynx www.waters.com/waters/nav.htm?locale=en US&cid=51316

he functionality is abbreviated as follows: p = peak detection, f = feature detection, cd =
lignment.
ect/Demo/begin.view [39] Open source
genepattern [40] Custom

Commercial
Commercial

f the available data results in a very fruitful interdisciplinary
esearch. In the field of proteomics, the importance of pub-
ic domain repositories has only recently been recognized [41].
xamples of such free raw data repositories are the PeptideAt-
as www.peptideatlas.org [42] and the Open Proteomics Database
ttp://bioinformatics.icmb.utexas.edu/OPD [41].

.2. Software tools for biomarker definition

Different software tools are needed at different stages of the
roteomic data analysis (see [43] for a review). The aim of such
oftware pipelines is to provide lists of biomarkers that will even-
ually be used for further analysis (e.g. sample classification).
nstrument vendors provide such integrated pipelines. However,
rom user perspective, most of them represent a black box as
either the source codes nor the details of the algorithms are
vailable. Recently an overwhelming number of commercial and
pen source packages were developed to analyze LC–MS and CE-
S data. Some features in those packages are quite similar, many

thers do differ. This may result in different lists of biomarkers
erived from the same dataset when using different packages.
eview articles have recently summarized some software packages
hat are currently in use [16,43–46]. Since some of the available
ools perform rather parts of the required raw data processing,
everal have to be combined in different ways for producing a
ailored data analysis pipeline that includes at a minimum peak
etection, charge deconvolution, alignment and feature detection.

n Table 2 we list packages that currently appear to be among
he most useful ones. However, this list cannot be considered
omprehensive. A more complete list of tools that may be used
uring different phases of data analysis can be found at www.ms-
tils.org/wiki/pmwiki.php/Main/SoftwareList.

. Sample classification using LC–MS and CE-MS data
Data processing results in a LC–MS/CE-MS profile for each sam-
le. The data from all samples in a study are formatted in a n × p
atrix with n representing the number of samples and p denoting

he number of variables. The structure of the data matrix is very
eminiscent of the output of microarray genomics experiments.

License Functionality

Open source p,f,cd,i,a
Open source p,f,cd,i,a
Open source p,f,cd,i,a
Open source p,f,cd,i,a
Open source p,f,cd,i,a
Commercial p,f,cd,i,mc
Commercial p,f,cd,i,mc,a

?cmd=catNavigate2&catID=601522 Commercial p,f,cd,i
p Commercial p,f,cd,i,a
4 Commercial p,f,cd,i,a

charge deconvolution, mc = multiple charge artifacts removal, i = de-isotoping, a =

http://tools.proteomecenter.org/TPP.php
http://proteomics.fhcrc.org/CPAS/Project/Demo/begin.view
http://www.broad.mit.edu/cancer/software/genepattern
http://www.insilicos.com/IPP.html
http://www.proteomesoftware.com
http://www.sashimi.sourceforge.net
http://www.proteomecommons.org
http://www.peptideatlas.org
http://bioinformatics.icmb.utexas.edu/OPD
http://www.ms-utils.org/wiki/pmwiki.php/Main/SoftwareList
http://proteomics.fhcrc.org/CPL/msinspect.html
http://www.expasy.ch/MSight
http://masspec.scripps.edu/xcms/xcms.php
http://omics.pnl.gov/software/VIPER.php
http://open-ms.sourceforge.net
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ence, the rich arsenal in software packages for analyzing genomics
ata may easily be used for proteomics data from LC–MS/CE-MS
xperiments. However, one must be aware about the high covari-
nce structure in the peak expression which has its origins in
ommon biological and chemical modifications of proteins, e.g.
TMs (Post Translational Modifications). Another technical differ-
nce is the sparseness of the data matrix (many entries are zeros).
he origin of these zeros may be either biological (i.e. the protein is
eally absent in the sample) or technical (i.e. the proteins is present
ut its signal is below the detection limit). These non-random
issing values may introduce substantial bias in the downstream

tatistical analysis so that proper analysis of this zeros is required
51].

The statistical analysis of the n × p data matrix usually includes
ome feature selection steps combined with pattern classifica-
ion algorithms. Several classification approaches from machine
earning and computer science research communities have been
ransferred to proteomics and genomics, which range from sim-
le classification rules to the combination of classifiers [52].
omparing the results of different procedures is beyond the
cope of this manuscript. Here, we review some of the feature
election approaches as well as a simple classification method.
he emergence of the free statistical software R (the R-project)
53]www.r-project.org and the related bioconductor-project
54,55]www.bioconductor.org have particularly boosted these
opics as both projects offer a huge number of contributed pack-
ges that cover almost all relevant algorithms. The adaptation
f R to personal needs is straightforward for trained program-
ers. Furthermore, its interfacing to popular programming

anguages such as C/C++ or Java is well developed. Given the
act that not all researchers in the omics fields are skilled pro-
rammers, several commercial and open source GUIs (graphical
ser interfaces) have been developed around the R core package.
xamples for the open source solutions are the BRB-arrayTools
www.nci.nih.gov/BRB-arrayTools.html) and the rattle R package
http://rattle.togaware.com). Good statistical analysis platforms are
lso provided by commercial packages like the Rosetta Syllego Sys-
em www.rosettabio.com/products/syllego, and the GeneSpring
X package www.chem.agilent.com/enUS/Products/software/

ifesciencesinformatics/genespringgx/Pages/default. Interested
eaders may consult, e.g. the web site genome-www5.stanford.
du/resources/restech.shtml for a more complete list. Other
nowledge discovery packages may also be used for the clustering,
eature selection or classification of LC–MS/CE-MS compiled data.
rominent examples which are freely available are listed in Table 3.

.1. Feature selection strategies

The curse of dimensionality drives us to reduce the dimension
efore applying classification algorithms. Most classification meth-
ds require the number of the predictors p be smaller than the
umber of samples n (p � n). However, in proteomics we often have

� n. As a consequence, we end up with an ill-conditioned prob-

em. The fundamental assumption for avoiding this problem is that
he informative part of the data (at least approximately) lies on a
ubspace of smaller dimension than the original one.

able 3
ools for mining and classifying LC–MS or CE-MS profiles.

ame Website-reference Language License

apidminer www.rapidminer.com [56] Java Open source
eka www.cs.waikato.ac.nz/ml/weka [57] Java Open source

range www.ailab.si/orange [58] Python Open source
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It is well known that statistical feature selection may improve
lassification accuracy in the validation set [59,60]. Feature selec-
ion procedures may be divided into three categories:

The embedded feature selection approach, where the ranking of
the features is part of the training of the classifier.
The wrapper feature selection approach, where the ranking of
the features is directly related to their contribution to the perfor-
mance of the classifier.
The filter feature selection approach, where the ranking of the
features is based on some criterion of how well the feature dis-
criminate the classes.

Here we focus on the last approach that may in turn be sub-
ivided into univariate and multivariate filter procedures. The
nivariate filter (also known as forward filtering) usually relies on
ome statistical test, which ensures that each individual feature
s discriminative between different classes with some predefined
tatistical confidence. Prominent tests that are widely used in bio-
ogical data processing are the student t-test for normal data and the
on-parametric Wilcoxon–Mann–Whitney test for non-Gaussian
ata. Since the number of potential biomarkers is high, multiple
ypothesis tests are usually performed. This requires appropriate
djustments. To give an example, let us suppose that we perform n
ndependent tests using 0.05 as the critical significance level. The
robability for a single test to come to a non-significant (that is a
orrect conclusion) result is hence 1 − 0.05 = 0.95 (95%). Since the
tests are independent, the probability that all these n tests to cor-

ectly reject the n null hypothesis is simply given by the product of
he single results, i.e. 0.95· · ·0.95 = 0.95n. The probability of at least
rongly reject one of the n null hypothesis is given by 1 − 0.95n.

hus, if our experiment performs 300 tests on 300 biomarkers, the
rror probability is given by 1 − 0.95300 = 0.99996. In other words,
e are almost sure that by performing 300 tests on 300 biomarkers,

t least one of declared significant findings will be a false positive.
ecause of the test independence, the probability Pr(k false pos-

tives) for having k such false positives among the n biomarkers
s simply given by the binomial distribution with the significance
evel ˛ as the probability of “success” (i.e. having a false positive):

r(k false positives) =
(

n
k

)
(1 − ˛)n−k˛k. (1)

This probability approaches a Poisson distribution for large n
nd small ˛ with n˛ being the expected number of false positives.
n our example of the 300 biomarkers tested at the significance
evel of 0.05, this probability is 0.9976679 for k = 6 and is 0.822023
ven for k = 12.

Bonferroni corrections (and their relatives such as the Holm
rocedure) are the most widely used approach for controlling the
xperiment-wide false positive rate. Distribution free resampling
ethods, like the Westfall and Young resampling procedures are

lso quite popular methods for the control of the family-wise error
ate (FWER). A review paper [61] presents a very detailed and
ractical yet mathematically thorough introduction to this topic.
major drawback of these procedures is that they may lack sta-

istical power. This leads Benjamini and Hochberg to introduce the
pproach of false discovery rate (FDR) [62]. The FDR is the frac-
ion of false positives among all tests declared significant. Since
n biomarker discovery one is usually concerned with finding all

hose that are differentially expressed between two conditions, we
re ready to accept some false positives to accomplish this. How-
ver, we also want to assure a low number of false positives. Hence
he idea is to control the FDR at some given value ı. Controlling
he FDR at ı = 0.05 means that on average 5% of the biomark-

http://www.r-project.org
http://www.bioconductor.org
http://www.nci.nih.gov/BRB-arrayTools.html
http://rattle.togaware.com
http://www.rosettabio.com/products/syllego
http://www.chem.agilent.com/enUS/Products/software/lifesciencesinformatics/genespringgx/Pages/default
http://genome-www5.stanford.edu/resources/restech.shtml
http://www.rapidminer.com
http://www.cs.waikato.ac.nz/ml/weka
http://www.ailab.si/orange
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rs declared significant are actually false positives. On the other
and, the other 95% of the biomarkers are indeed true positives. The
ajor drawback of such an univariate approach is that it may select

ighly correlated features discriminating the classes in similar
ays.

The multivariate filter approach transforms a large number of
he original variables to a new set of variables which are uncor-
elated and ordered so that the first few account for most of the
ariation in the data. The classical approach is the principle com-
onent analysis (PCA), where the new components are chosen
uch that they maximize the variability of the original predictors
cross samples [63]. In the partial least squares (PLS), the new
omponents are chosen such that they maximize the covariance
etween the original predictors and the response variables [64].
nother attractive approach is the sliced reverse regression (SIR),
hich uses the inverse regression curve for dimension reduction.
ecently, [65] compared these three methods for subsequent logis-
ic regression classification and found that the PLS method has the
ighest performance/computation time ratio. One disadvantage of
he multivariate filtering approach is that it may miss biologically
mportant features just because they are highly correlated to some
ther presumably less meaningful variables for explaining the biol-
gy.

Similar to the multivariate approach, global statistical tests are
lso used to assess the significance of a whole set of biomarkers.
hese may again be beneficial since the covariance structure of data
s fully taken into account. Several statistical global tests were intro-
uced [66–69]. These tests eventually shift the analysis from the
earching for single biomarkers to identifying pathways and inter-
ction networks. Finally, we note that at least for the microarray
ata, the use of multivariate feature selection techniques do not
ecessarily mean a better performance for subsequent classifica-
ion [70]. It will be interesting to clarify if this is also correct for
C–MS or CE-MS proteomics data.

.2. Classification

Since it was proposed by Fisher in 1936 [71], the LDA has
merged to be one of the easiest, yet also powerful classification
ethods. In contrast to sophisticated methods such as neural net-
orks, its stringent simplicity allows for a theoretically solid basis

nd great practical usefulness. We here follow [13] and summarize
ome of its properties in order to turn attention to possible pitfalls
hat may accompany a classification task. Let us suppose that we
ant to classify samples drawn from multivariate normal densities:

k(x) = 1

(2�)p/2|�|1/2
exp

{
− (x − �k)T �−1(x − �k)

2

}
, (2)

here x = (x1· · ·xp), �k is the mean vector and � is the covari-
nce matrix. Application of the Bayes rule leads to the so-called
iscriminant function

k(x) = xT �−1�k − 1
2 �T

k�−1�k + log(�k), (3)

here �k is the prior probability for class k. In practice, the param-
ters �k, �k and � are estimated from the training data. For the
wo class problem (e.g. control and disease group), the LDA rule
lassifies a new sample to the disease group (group 2 of size N2) if

T �−1(�2 − �1) > 1
2 �T

2�−1�2 − 1
2 �T

1�−1�1 + log
(

N1
N2

)
, (4)
therwise to the control group (group 1 of size N1).
From Eqs. (3) and (4), we see that the LDA requires an inversion

f the covariance matrix �. Thus, a full rank matrix is required,
hich is only the case if the number of variables (biomarkers) p

s less than or equal to the number of samples n. The situation in

t
t
H
t
r
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roteomics is rather the opposite (p � n). Even if n = p the matrix
ill still not be invertible if some of its vectors are collinear. Hence,

he problem of colinearity of biomarkers may lead to instable LDA
lassification rules. Actually, these numerical instabilities remain
ven using approximate inversions such as singular value decom-
osition. To avoid this problem, it is advisable to perform PCA
efore LDA. Besides leaving one with well posed problem, such
tep amount to eliminating small eigen-values that may make the
DA rule useless and make direct matrix operations numerically
ntractable. Another popular solution is to use a regularized version
f the covariance matrix �̃ such as:

˜ = ˛� + (1 − ˛)�Ip (5)

here 0 < ˛ < 1 is a parameter and Ip is the identity matrix of p
imensions. This procedure leads to the so-called regularized LDA.

The performance of the LDA for very high dimensional classifi-
ation tasks, while often satisfactory, is not optimal [72,73] and the
equired matrix calculations may become highly involved. Hence
ther classification methods such as support vector classifier [74]
r boosting algorithms [75] may be more suitable for some classi-
cation purposes. A direct comparison of the performance of these
ifferent methods for classifying LC–MS or CE-MS profiles is beyond
he scope of this paper. For MALDI derived profiles a detailed com-
arison is reported in [76].

.3. Cross-validation

Different classification algorithms do show different sensitiv-
ty to noisy data and outliers as well as different susceptibility to
he overfitting problem. This problem is related to the generaliza-
ion power (i.e. the prediction capabilities for unknown samples) of
he chosen method. The lack of detailed error estimation may haz-
rd the diagnostic power of biomarkers derived from proteomics
tudies and had led to a very controversial discussion about the
linical value of such findings [77–86]. One way to avoid falsely low
rror estimates is to use cross-validation. The data in a study may
e divided into training and validation sets. The training data are
sed for feature selection and training the classifier to derive a deci-
ion rule that is then applied on the validation set. Several papers
ave shown that performing feature selection on the entire dataset
ften grossly underestimates the true generalization error [87,88].
ethods for estimating the test error include leave-one-out cross-

alidation, k-fold validation, and random subsampling validation.
he choice of validation methods largely depends on the sample
ize available. The suitability of those methods for the omics data
as been discussed in detail in [89–91].

. Conclusion

The clinical utility of proteomic analysis is an area of still unre-
lized potential. It offers the promise of diagnosis, prognosis, and
herapeutic follow-up of human diseases. Given the current sta-
us of measurement reproducibility and lack of standardization,
omparative studies are of great importance.

The biological complexity of biofluids made the hyphenation
echniques, where different combinations of separation techniques
oupled with various detection schemes the methods of choice.
ost methods generate two-dimensional data charts of huge size.

he analysis of the generated data warrants an interdisciplinary
oint effort to address its complexity. Of particular importance are

he bioinformatical and statistical topics. The need of standards in
he field was recognized as very stringent and the international
uman Proteome Organization (HUPO) www.hupo.org launched

he MIAPE [1] standard for sharing experimental data between
esearch groups. Conformity with the Clinical Data Interchange

http://www.hupo.org
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tandards Consortium (CDISC) www.cdisc.org and the Health Level
(HL7) www.hl7.org guidelines still have to be addressed. The ven-
or independent file formats like mzXML and the availability of
ublic data repositories are milestones on this road. Public access
o data is the requirement for clinical proteomics development that
as grossly underestimated in the initial studies. The adoption of

tandards will boost meta-analysis using raw data from different
enters. For example, by making their data publicly available, the
laim of diagnosing ovarian cancer at the earliest stages of the dis-
ase [92] could not be confirmed [80,81].

For study design, all sources of variability must be carefully con-
idered [12,93,94]. For instance, biological inter- and intra-patient
ariability due to confounding factors such as age and gender may
nfluence the protein profile obtained from a given sample. Another
ariability is due to differences in sample collection, handling, stor-
ge, instrumentation and raw data processing. To obtain sound
esults, a sufficiently large number of samples must be employed
o best represent the target population of interest as non-tailored
ample sizes may also bias the findings. Further, any finding must be
alidated in an independent test set before they can be considered
aluable for reporting [2]

The cross center comparisons and reproducibility certainly
oost the ultimate goal of clinical proteomics to determine which
roteins or groups of proteins are responsible for a specific function
r disease. Accurate identification of protein is crucial if the biologi-
al role of biomarkers is to be discovered and exploited as potential
herapeutic targets. A number of the novel putative biomarkers
iscussed represent fragments of proteins that have undergone
isease-specific PTMs. LC or CE MS/MS based techniques must still
ndergo strict scrutiny for testing if they are capable of detecting
hese subtle differences.

While it is evident that a lot of additional work is required to
ring clinical proteomics to its full potential, we also want to point
ut that it has already proven a valuable and successful approach
n several recent studies [18–22].
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